Калькулятор расчета шага укладки обогревательного кабеля

Резистивный нагревающий кабель

Системы теплых полов на этой основе применяется чаще всего, так как он прост по конструкции и имеет более низкую, по сравнению с другими типами нагревателей цену. В его основе одно- или двухжильный проводник, заключенный в защитный экран и имеющий определенное сопротивление. По своей сути – это вытянутый нагревательный элемент, который при подключении к электрической сети вырабатывает определенное количество тепловой энергии. Резистивные кабели всегда имеют фиксированную длину, которую нельзя изменять ни в коем случае, так как это в корне меняет всю настройку системы. Любые попытки укоротить резистивный кабель уменьшают его сопротивление, увеличивается ток и это чаще всего приводит к выходу из строя.

Резистивные кабели – просты, надежны и неприхотливы

Основными характеристиками резистивных кабелей являются:

Конструкция кабеля (одножильный, двухжильный, зональный) и его назначение.

напряжение питания и мощность

Обычно производители указывают два напряжения питания 220/230 вольт и соответствующую им мощность в Ваттах, например, греющий кабель deviflex DTIP?18, длиной в 22 метра имеет мощность 360/395 Ватт соответственно

Очень важной характеристикой греющих кабелей является погонная мощность, то есть, сколько Ватт излучается одним метром. В вышеприведенном примере кабеля погонная мощность составляет 18 Вт/м при напряжении питания 230 В. Этот показатель указан в маркировке кабеля, но его можно и вычислить

Если мощность в 395 Вт поделить на длину в 22 метра, то получается 395/22=17,95 Вт/м

Этот показатель указан в маркировке кабеля, но его можно и вычислить. Если мощность в 395 Вт поделить на длину в 22 метра, то получается 395/22=17,95 Вт/м.

Резистивные кабели производятся разной длины (7—220 м), различной погонной и общей мощностью, что вполне может удовлетворить все потребности. Естественно, что кабель надо укладывать по особой схеме, для охвата всей площади помещения, но об этом будет подробно рассказано в последующих разделах.

Нагревательные маты

Для удобства укладки были изобретены нагревательные маты, где греющий резистивный кабель вплетен в полимерную сетку и уже уложен с нужным шагом. Сетка обычно имеет клеевую основу и может приклеиваться к поверхности пола, что только добавляет удобства при монтаже. Особенно это хорошо при укладке плитки, когда маты скрываются прямо в слое плиточного клея или при ремонте, если делают только самовыравнивающую тонкую стяжку, на которую можно впоследствии настелить ламинат или ковролин. Большинство греющих матов выпускается шириной в 45 см и разной длины, что позволяет выбрать конкретную модель для любого помещения. При этом не стоит забывать, что в основе матов лежит резистивный, обычно двухжильный, кабель, поэтому отрезать маты по проводникам строго запрещено!

Нагревательные маты очень удобны в расчетах и монтаже

Основными характеристиками нагревательных матов являются:

  • Напряжение питания, которое обычно составляет 220/230 В и мощность нагревательного мата.
  • Длина мата и рекомендуемая площадь укладки, обычно от 0,5 м2 до 12 м2 при длине от 1 до 24 м.
  • Один из главных показателей – удельная мощность, то есть, какое количество тепла генерирует нагревательный мат на 1 ме2р квадратный. Измеряется она в Вт/м2 (Ваттах на метр квадратный). Для теплого пола обычно выпускаются маты с удельной мощностью 100—150 Вт/м2, очень редко 200 Вт/м2.

Какие требования к помещениям должны быть соблюдены при установке системы

При монтажных работах самым правильным решением будет, когда трубопровод устанавливается на начальном этапе возведений перекрытий. Такой метод экономичнее радиаторного на 30 – 40 %

Так же возможно установить водяную отопительную конструкцию уже в готовом помещении, но для экономии семейного бюджета, здесь стоит обратить внимание на следующие требования:

  1. Высота потолков должна позволить смонтировать теплые полы толщиной от 8 до 20 сантиметров.
  2. Высота дверных проемов не должна быть меньше 210 сантиметров.
  3. Для монтажа цементно – песчаной стяжки, пол должен быть более прочный.
  4. Во избежание завоздушенности контуров и высокого гидравлического сопротивления, поверхность для основания конструкции должна быть ровной и чистой. Допустимая норма неровности составляет не более 5 миллиметров.

А так же в самом здании или в отдельных комнатах, где будет установлена система отопления, должны быть выполнены  штукатурные работы и вставлены все окна.

Монтаж электрического кабеля

Подобное реально провести в несколько этапов. Все начинается с подготовки основания. Оно выравнивается, убирается мусор, исключается наличие дефектов. Любая мелочь повлияет потом на эффективность прогрева. После приступают к установке подложки.

Её теплоотражающее свойство направляет энергию прямо наверх. Ведь нагреть нужно воздух в помещении, а не потолок соседям

Важно не забыть про гидроизоляцию. Специальная полиэтиленовая пленка в два-три слоя предотвратить ненужное скопление влаги. Кабель лучше крепить на арматуру, толщина которой минимум 4 мм

Силиконовые/металлические хомуты справляются идеально. Сетка с ячейками 150х150 мм подойдет во всех случаях. Терморегулятор крепится на ближайшей стене к выходу. Его высота минимум 40 см. Провод можно убрать в саму стену

Кабель лучше крепить на арматуру, толщина которой минимум 4 мм. Силиконовые/металлические хомуты справляются идеально. Сетка с ячейками 150х150 мм подойдет во всех случаях. Терморегулятор крепится на ближайшей стене к выходу. Его высота минимум 40 см. Провод можно убрать в саму стену.

Крепление кабеля к монтажному приспособлению

Важно, под мебель или большие предметы декора/интерьера монтаж не осуществляется. Это вызовет перегрев. Заранее на плане придется просчитать зоны, которые поменять крайне сложно

Заранее на плане придется просчитать зоны, которые поменять крайне сложно.

Крепится провод с нужным шагом. Теплоотдатчик укладывается только в гофрированной трубе. Все это помещается в штробу. Следующий шаг это заливка стяжки. Нормальная толщина 4 см. Напольное покрытие теперь только после полного высыхания.

По краям не забыть ленту, предотвращающую рассыхание бетона. Постепенное повышение температуры создаст правильные предпосылки для укрепления имеющегося слоя.

Расчет для неправильных комнат

Бывает так, что комнаты имеют сложную геометрию. Чтобы подсчитать общую площадь нужно разбить такое помещение на несколько зон. После этого подсчитать их площадь и просуммировать (см. рис).

Два варианта расчета площади комнаты неправильной формы. Суммарная площадь помещения равна площади зон A + B + C.

После того как была выведена площадь каждой части помещения, суммируем их. после этого полученное значение подставляем в ту же формулу:

S / H x 1,1 + D x 2 = L

Иногда в одной части комнаты теплый пол укладывают с шагом труб, отличным от другой. В таком случает необходимо рассчитывать длины труб для каждой части помещения отдельно. А результаты – суммировать.

Максимальная температура теплого пола

Как уже было сказано выше, нагревательный кабель может нагреваться до температуры 65 градусов по цельсию. Следовательно, теплый пол никак не может разогреться до большей температуры. Стоит заметить, что и до 65 градусов он вряд ли разогреется – ведь кабель окружен слоем стяжки, плиточного клея, самой плиткой. Все эти материалы будут рассеивать тепло в окружающий воздух и бетонное перекрытие пола.

Поэтому опасения, что от греющего кабеля, залитого стяжкой или заложенного плиткой случится пожар – бессмысленны. Под слоем цемента и кафеля не случится ничего страшного даже при возгорании самого кабеля, что невозможно при правильном монтаже.

Единственное, чего не стоит делать – размещать греющие жилы под различными ковриками и пледами. Из-за подобной самодеятельности действительно может случится пожар – оболочка кабеля окружена горючим материалом, который может подвергаться механическому воздействию. В этом случае провод может легко повредиться и замкнуть.

Общие сведения по результатам расчетов

1. Общий тепловой поток — Количество выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.

2. Тепловой поток по направлению вверх — Количество выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.

3. Тепловой поток по направлению вниз — Количество «теряемого» тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).

4. Суммарный удельный тепловой поток — Общее количество тепла, выделяемого системой ТП с 1 квадратного метра.

5. Суммарный тепловой поток на погонный метр — Общее количество тепла, выделяемого системой ТП с 1 погонного метра трубы.

6. Средняя температура теплоносителя — Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.

7. Максимальная температура пола — Максимальная температура поверхности пола по оси нагревательного элемента.

8. Минимальная температура пола — Минимальная температура поверхности пола по оси между трубами ТП.

9. Средняя температура пола — Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.

10. Длина трубы — Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.

11. Тепловая нагрузка на трубу — Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.

12. Расход теплоносителя — Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.

13. Скорость движения теплоносителя — Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.

14. Линейные потери давления — Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000 Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.

15. Общий объем теплоносителя — Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.

Смежные нормативные документы:

  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
  • СП 29.13330.2011 «Полы»
  • СП 71.13330.2017 «Изоляционные и отделочные покрытия»
  • СП 41-102-98 «Проектирование и монтаж трубопроводов систем отопления с использованием металлополимерных труб»
  • СП 41-109-2005 «Проектирование и монтаж внутренних систем водоснабжения и отопления зданий с использованием труб из «сшитого» полиэтилена»

Расчёт электрического тёплого пола

Парадоксальность электрическому тёплому полу сообщает дихотомия сравнений по разным параметрам. С одной стороны он универсален по месту монтажа, ибо обогрев помещений можно организовать вне зависимости от принадлежности объекта. Это может быть:

  • Квартира;
  • Частный дом или коттедж;
  • Производственное предприятие;
  • Коммерческий или социально-культурный объект.

Но зато у электрического тёплого пола нет возможности выбора энергоносителя! При отсутствии подключения к центральной электросети, например в автономном доме, расчёт пола показывает его высокую эффективность только при идеализированной теплоизоляции на уровне «пассивного дома» при комплектации качественными аккумуляторами электроэнергии.

При этом функционально-технологические особенности нагревательного кабеля, дают возможность более вариативно подходить к шагу укладки. Петли могут размещаться гораздо ближе друг к другу, стяжка может отсутствовать полностью (например при декоративной отделке полов ламинатом или паркетом). Часто нагревательный кабель электрического тёплого пола прячут в плиточный клей, фиксируя сверху керамогранитный отделочный материал.

Практически во всех случаях, теплотехнические расчёты калькулятора электрического тёплого пола по площади, демонстрируют более высокую скорость нагрева помещения, по сравнению с водяным контуром.

При равных условиях, общая стоимость работ по организации электрического тёплого пола обходится на 30-60% дешевле, чем аналогичный проект водяной системы. Такой большой разбег (30-60%) объясняется разницей в площади обогреваемой комнаты, относительно рассчитанной на калькуляторе длины трубы тёплого пола. Чем больше площадь обслуживаемого помещения, тем дешевле стоимость тёплого пола за 1 кв. м.

Тип греющего кабеля

В свете бурно развивающихся технологий невозможно с полной уверенностью сказать, сколько типов греющего кабеля существует. Мы рассмотрим три разновидности самых распространенных кабелей.

Одножильный, резистивный кабель. Представляет собой экранированный одножильный провод с высоким удельным сопротивлением. Кабель нагревается не более +65 градусов, при соблюдении всех технических требований по подключению. Требует обязательного использования терморегулятора (термостата), который регулирует температуру пола в целом и не дает кабелю перегреться, и выйти из строя. Подключается к питанию с обоих концов, поэтому начало и конец кабеля должны располагаться в одной точке.

При покупке установочного комплекта, греющая секция рассчитана по длине на нужную мощность, подцеплена к холодному соединительному проводу для подключения к терморегулятору. При собственном проектировании нагревательных секций (у китайских братьев кабель продается отдельно, метрами) рассчитывается длинна кабеля по закону Ома. Мощность (протекаемый ток*напряжение), рассеиваемая кабелем, в таком случае не должна превышать рекомендованную. То есть, производитель указывает мощность метра кабеля, остается рассчитать длину, чтобы ток через секцию соответствовал мощности.

Двухжильный, резистивный кабель. По принципу работы идентичен одножильному, с той разницей, что холодный соединительный кабель подключается с одной стороны.

Оба типа требуют наличия датчика температуры и термостата для коммутации. Без термостата кабель может перегреваться и быстро выйдет из строя. Мощность на метр погонный колеблется от 10 до 20 ватт, в зависимости от производителя и модели. Толщина резистивного кабеля так же может различаться у разных производителей, в среднем около 5 мм.

Саморегулирующийся кабель. Нагревательный элемент данного типа кабеля расположен между токопроводящими жилами по всей длине. В основе нагревательного вещества лежит полупроводник с положительным температурным коэффициентом (PTC). Чем сильнее прогревается кабель и окружающее его пространство, тем меньше тепла он выделяет. Тем самым провод сильнее «жарит» холодный пол и «еле греет» уже прогретый. Отличительной чертой данного типа является наличие моделей, мощностью до 60+ ватт на погонный метр. Мощность является начальной, когда пол холодный, при нагревании мощность падает.

Одно из главных преимуществ такого изделия — более быстрый подогрев холодного пола, из-за более высокой мощности. Такой кабель может устанавливаться без термостата. Однако, установка термостата существенно экономит электроэнергию.

Это изделие, как правило, на порядок дороже резистивных нагревателей. Чаще его используют для обогрева труб, нежели для теплых полов.

Монтаж секционного обогревочного кабеля

Поскольку такие нагреватели для бетона поставляются не в бухтах, а готовыми секциями, снимается вопрос с обрезкой. Все что необходимо для сбора установки для зимнего бетонирования это рассчитать мощность сегмента исходя из того сколько кубов бетона в конструкции, после чего выбрать кабель соответствующей длины.

Начнем с краткого руководства по расчетам и небольших рекомендаций по монтажу:

В инструкции к технологии ТМО бетона указывается, что на обогрев кубометра смеси требуется от 500 до 1500 Вт (зависит от температуру воздуха). Расход электроэнергии можно существенно снизить, если применить несколько несложных технических приемов:

  1. Использовать специальные присадки для смеси, позволяющие понизить точку замерзания раствора.
  2. Утеплить опалубку.
  • Если производится заливка балки или перекрытия, расчет обогревочного кабеля производится из 4 погонных метров на 1 м2 площади поверхности. При возведении объемных элементов, таких как двутавровые бетонные балки, электрообогрев укладывают ярусами, с расстоянием между ними не более 40,0 см.
  • Защита кабеля позволяет приматывать его к арматуре.
  • Расстояние от поверхности конструкции до уложенного внутри электрообогревателя должно быть как минимум 20,0 см.
  • Чтобы бетонная смесь прогревалась равномерно, нагреватели должны быть уложены на одинаковом расстоянии.
  • Между разными контурами должно быть не менее 40,0 мм.
  • Запрещено пересечение греющих проводников.

Типы кабельного пола

Типы кабелей используемых в нагревательных матах

Наибольшую часть конструкции кабельного пола занимает нагревательный кабель. Есть несколько разновидностей этой системы, в зависимости от типа кабеля. Выделяют следующие виды кабельного теплого пола:

  1. Саморегулирующийся;
  2. Резистивный одножильный;
  3. Резистивный двухжильный.

Последний вариант имеет в своей системе две жилы – нагревательную и питающую. Такая конструктивная особенность создает преимущества перед одножильным вариантом пола:

  • Отсутствует необходимость возвращения одной жилы к терморегулятору;
  • Более низкий уровень электромагнитного излучения.

Поскольку, в одножильной кабельной системе довольно высокое излучение, такие теплые полы рекомендуется использовать в малопосещаемых или нежилых помещениях. Двухжильная система отличается более высокой стоимостью, но полностью безопасна.

Главным недостатком любой резистивной системы является перегрев участков, где происходит нарушение контакта стяжки и кабеля. Этот недостаток отсутствует у саморегулирующихся кабельных систем.  Структура кабеля в такой системе более сложная. Она позволяет увеличивать сопротивление кабеля на участках, где повышается температура. Протекающий через участок ток уменьшается, что исключает выход из строя всей системы.

Зачем нужен прогрев бетона

Если вода в растворе бетона замерзнет, он не наберет технологической прочности

Электропрогрев бетона требуется в холодное время года, когда температура окружающей среды опускается ниже температуры замерзания воды, что влечет за собой гидратацию бетонного раствора. Смесь не затвердевает, как требуется, а частично замерзает.

С приходом тепла начинает активный процесс оттаивания, в результате монолитность конструкции нарушается, что отрицательно сказывается на долговечности и сопротивлении проникновения влаги в полости монолитных блоков.

Чтобы предотвратить нежелательные и опасные для здоровья и жизни человека последствия, обязательно осуществляют прогрев бетона в зимнее время специальными проводами. Расчет метража и схемы прокладки проводят на этапе проектирования здания.

Калькулятор расчета шага укладки обогревательного кабеля

Электрический кабельный «теплый пол» — один из наиболее эффективных методов обогрева помещения или создания наиболее комфортных условий пребывания в нем. Его подобной системы – не столь сложен, и вполне может быть проведен самостоятельно.

Калькулятор расчета шага укладки обогревательного кабеля

Укладка контура проводится в соответствии с определенными правилами. Длина нагревательного кабеля должна обеспечивать требуемое количество тепловой энергии для конкретного помещения (см. соответствующий калькулятор расчета длины ). Укладку проводят зигзагообразно, петлями, с определенным шагом между ними, чтобы обеспечивался наиболее равномерный нагрев поверхности пола. С этим параметром поможет определиться калькулятор расчета шага укладки обогревательного кабеля, размещенный ниже.

Пояснения по проведению расчетов

  • Площадь укладки кабеля – это не вся комната, а только те участки, где он будет действительно укладываться. Исключаются из расчёта места установки стационарной мебели, участки прилегания к стенам (не менее 50 мм), и к отопительным приборам (не менее 100 мм). Считается вполне нормальным, если расчётная площадь укладки «тёплого пола» составляет порядка 75% от общей площади помещения.
  • Исходным значением для проведения вычисления будет не рассчитанная калькулятором длина кабеля, а длина уже приобретённого комплекта, которая может несколько отличаться от полученного в результате расчёта значения.
  • Кабель нагревается равномерно и одновременно по всей своей длине, поэтому при укладке можно избегать сложных схем – достаточно обеспечить равномерность расположения витков.
  • Шаг укладки стараются выдерживать одинаковым, чтобы не допустить «эффекта зебры» — выраженного чередования холодных и теплых полос.
  • Категорически запрещены пересечения кабеля на поверхности пола.

Цены на греющий кабель

В вопросах создания кабельного подогрева поверхности пола – множество важных нюансов. Более подробно о них расскажет статья нашего портала с иллюстрированной инструкцией по самостоятельному монтажу электрического «теплого пола» .

Источник

Требования к напольному покрытию при эксплуатации теплых электрических полов

При проектировании электрической системы обогрева полов зачастую забывают о том, что с ней могут работать далеко не все покрытия. И к этому вопросу надо отнестись со всей внимательностью и серьезностью. С какими покрытиями работа теплых электрических полов противопоказана:

  • Линолеум на резиновой или войлочной основе.
  • Толстые ковры или ковры на резиновой основе.
  • Дощатый пол толщиной более 25 мм.

При выборе линолеума, ламината, паркетной доски или ковролина следует обязательно поинтересоваться, могут ли работать эти покрытия с системой теплых полов. Ведущие производители указывают это всегда на маркировке и в сопроводительной документации.

Такими значками обозначаются напольные покрытия, способные работать с теплым полом

Для контроля отопления деревянных полов, а также тонких полов рекомендуется использовать терморегуляторы с двумя датчиками: температуры поверхности пола и воздуха в помещении. Если известно термическое сопротивление напольного покрытия RT, которое может быть указано в документации, то лучше руководствоваться следующими правилами:

  • При удельной мощности 150 Вт/м2 максимальное термическое сопротивление(RTmax) может быть до 0,13 м2*K/Вт.
  • При Pуд=125 Вт/м2 – RTmaxне более 0,16 м2*K/Вт.
  • При Pуд=100 Вт/м2 – RTmaxне более 0,18 м2*K/Вт.

Если в конструкции пола применяются многослойные покрытия, например – ламинат с подложкой, то их термические сопротивления складываются, и проверяется соответствие вышеперечисленным условиям.

Информация по назначению калькулятора

Онлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы, расчета диаметра и длины трубы. Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.

При завышении предельно допустимых значений основных параметров, калькулятор укажет на ошибки.

Тепловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла. Нагревательные элементы такой системы не занимают дополнительного места в отличие от настенных радиаторов.

Правильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.

Система теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.

Полученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.

Для более точного расчета обязательно обратитесь к квалифицированным специалистам в вашем регионе!

Зачем нужен прогрев бетона?

В холодное время года, когда температура окружающего воздуха опускается ниже точки замерзания воды, возникают проблемы с гидратацией бетонного раствора. Проще говоря, смесь частично замерзает, а не полностью затвердевает. После повешения температуры окружающей среды начинается процесс оттаивания, монолитность смеси может быть нарушена, что отрицательно отразится на монолитности конструкции, ее сопротивлению проникновения воды, что приведет к снижению долговечности.


Последствия заливки раствора на морозе, в этом случае не поможет даже гидрошпонка Аквабарьер или другая гидроизоляция

Чтобы избежать перечисленных последствий, обязательно необходимо зимой делать электропрогрев бетонной смеси. При этом изотермическом процесс не возникает нарушений в ее структуре, что положительно отражается на прочности возводимой конструкции.

Классификация кабелей

Изделия можно классифицировать так:

  1. Резистивный одножильный. Тут теплоотдача одинаковая практически по всей длине. Недостатком такого кабеля может стать локальный перегрев некоторых участков напольного покрытия. Что касается монтажа, то тут нужно следить за тем, чтобы оба конца находились в одной точке.
  2. Резистивный двухжильный. Тут одна жила служит для образования тепла, а вторая – для проведения электрического тока. Во время монтажа такого изделия не обязательно монтировать два конца кабеля в одной точке. Еще одним достоинством такого материала является то, что двухжильный кабель имеет в своем составе возвратную жилу, а также дополнительно покрыт слоем изоляции, что делает его более безопасным для применения.

  3. Саморегулирующийся. Это изделие способно самостоятельно регулировать свою мощность, в зависимости от того, понизилась или повысилась температура в помещении. Кроме того, представленный продукт очень хорошо защищен от механического, химического или электрического повреждения. То есть пол полностью защищен от возможности перегрева. Устройство его достаточно простое: две жилы, проводящие ток, размещены параллельно друг другу. Также внутри кабеля есть полупроводниковая матрица, которая является нагревательным элементом. Вся конструкция обтянута стальной оплеткой и внешней изолирующей оболочкой.

Есть еще некоторые особенности. Например, резистивный одножильный или двухжильный греющий элемент обладает хорошей мощностью и пластичностью, что позволяет использовать его в помещениях сложной конструкции. Что касается саморегулирующегося провода, то он считается более дорогим, мощным и более экономичным. Кроме того, он очень надежный и прослужит длительное время.

Общее строение «теплого пола» с нагревательным кабелем

Чтобы принимать решение о выборе того или иного «теплого пола», надо, думается, понимать, что выбранная система собою представляет, и с чем простоит столкнуться в ходе выполнения монтажных работ.

Итак, подогрев пола с помощью электрического кабеля.

Примерная схема устройства «теплого пола с электрическим нагревательным кабелем.

1 — плита перекрытия.

2 — стой термоизоляции, необходимый для эффективной работы системы «теплый пол».

3 — тонкая стяжка, закрывающая термоизоляцию и выравнивающая поверхность под укладку нагревательного кабеля.

4 — тонкая термоизоляционная подложка, обычно – из вспененного полиэтилена, с фольгированной поверхностью. Отражающая фольгированная поверхность должна смотреть вверх.

5 — уложенный нагревательный кабель «теплого пола».

6 — Монтажные ленты (шины), облегчающие укладку кабеля. Необязательный элемент – кабель часто просто подвязывают к армирующей полимерной сетке, как показано на первой иллюстрации этой публикации.

7 — цементно-песчаная стяжка, толщиной от 20 до 50 мм, закрывающая кабель, становящаяся не только основой для последующего настила финишного покрытия пола (поз. 8), но и распределителем и аккумулятором выработанного кабелем тепла.

9 — соединительные муфты, обеспечивающие коммутацию нагревательного кабеля с проводами питания, или, как их еще называют, «холодными концами» (поз. 10).

11 — термодатчик в трубке, вмурованной в стяжке, для постоянного отслеживания температуры нагрева «теплого пола».

12 — Терморегулятор, расположенный в удобном для пользователя месте. Выполняет функции общей коммутации всех подходящих проводов («холодных концов», кабеля домашней электросети 220 В, сигнального провода термодатчика) и управления – отлаженная система будет поддерживать температуру нагрева поверхности, заданную пользователем, или по запрограммированному алгоритму.

Схема, безусловно, лишь примерная, и на деле могут быть как мелкие, так и довольно серьезные изменения, в зависимости от конструкции пола. Но общий принцип сохраняется: в любом случае – под нагревательным кабелем обязательно должен располагаться слой термоизоляции.

Стяжка, заливаемая поверх кабеля – это оптимальное решение. Но если посмотреть внимательнее на проекты, опубликованные в интернете, то видно, что иногда даже обходятся без нее. Пример показан на иллюстрации ниже.

Один из вариантов размещения нагревательного кабеля в «недрах» деревянного пола

В данном примере между лагами деревянного пола уложены жесткие плиты высокоэффективного утеплителя с внешним фольгированным покрытием. По ним произведена укладка нагревательного кабеля. Сверху кабель ничем не заливается – просто по лагам осуществляется монтаж половиц.

Да, такая схема тоже будет работать, но надо правильно понимать, что высокой эффективности ожидать от нее не приходится. Для создания каких-то «зон комфорта» – возможно, но в качестве альтернативы отоплению – и речи быт не может.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий